MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 3 - SOLUTIONS

Problem 1 (20 points). Let $A, B \subset \mathbb{R}$ be nonempty subsets, and assume that if $x \in A$ or $x \in B$ then x > 0. Show that if $A/B = \{x/y : x \in A \text{ and } y \in B\}$, then:

$$\sup(A/B) = \frac{\sup A}{\inf B}$$

whenever $\inf B > 0$.

Solution. Denote $z = \frac{\sup A}{\inf B}$. We will show that z is an upper bound of A/B, and that if y < z, then y is not an upper bound of A/B.

First, we show that z is an upper bound. If $x \in A/B$, then there exists $a \in A$ and $b \in B$ such that x = a/b. Since sup A is an upper bound of A, $a \leq \sup A$. Similarly, $b \geq \inf B$, and hence $1/b \leq 1/\inf B$ (since all elements of B are positive). Multiplying these inequalities, we see that

$$\frac{a}{b} \le \frac{\sup A}{\inf B} = z$$

Hence z is an upper bound.

Now suppose that y < z. If $y \le 0$, y cannot be an upper bound since A and B consist of positive numbers. So without loss of generality, y > 0. Let $\varepsilon = \frac{\sup A - y \inf B}{1 + y}$. Then $\varepsilon > 0$ since y < z. Since $\sup A$ is the least upper bound of A, there exists $a \in A$ such that $a > \sup A - \varepsilon$. Similarly, there exists b such that $b < \inf B + \varepsilon$. Hence

$$a/b > \frac{\sup A - \varepsilon}{\inf B + \varepsilon}$$

=
$$\frac{(1+y) \sup A - (\sup A - y \inf B)}{(1+y) \inf B + (\sup A - y \inf B)}$$

=
$$\frac{y(\sup A + \inf B)}{\inf B + \sup A}$$

=
$$y.$$

Thus, y cannot be an upper bound of A/B and $z = \sup(A/B)$.

Problem 2 (30 points, 10 each). Determine whether the sequence converges. If it converges, find its limit and prove that the sequence converges to that limit. If it diverges, prove that it diverges.

(a)
$$\left\{\frac{2n+3}{8n+7}\right\}$$

(b)
$$\left\{\frac{n^2-100n}{7n+3}\right\}$$

(c)
$$\left\{\sin(\pi \cdot n)\right\}$$

Solutions.

(a) We claim this sequence converges to 1/4. This follows from the limit arithmetic theorem (aka, the main limit theorem):

$$\lim_{n \to \infty} \frac{2n+3}{8n+7} = \lim_{n \to \infty} \frac{2+3/n}{8+7/n} = \frac{2+3\lim_{n \to \infty} 1/n}{8+7\lim_{n \to \infty} 1/n} = 2/8 = 1/4.$$

(b) We claim that the sequence diverges to ∞ . Indeed, fix M > 0, and let N = 7M. Then if $n \ge N$,

$$\frac{n^2 - 100n}{7n + 3} \ge \frac{n^2}{7n} \ge \frac{(7M)^2}{7 \cdot (7M)} = M.$$

Hecne the sequence diverges to ∞ .

(c) Since $\sin(\pi \cdot n) \equiv 0$, the sequence is constant, and hence converges (to 0).

Problem 3 (Book 2.2.11, 20 points). Let (a_n) and (b_n) be sequences, and assume that $b_n \to 0$ and $|a_n| \leq b_n$ for every $n \in \mathbb{N}$. Prove that $a_n \to 0$.

Solution. Let $\varepsilon > 0$. Since $b_n \to 0$, there exists N such that if $n \ge N$, $|b_n - 0| = |b_n| < \varepsilon$. Then if $n \ge N$,

$$|a_n - 0| = |a_n| \le b_n \le |b_n| < \varepsilon$$

Hence $a_n \to 0$.

Problem 4 (10 points). Show that if I = [a, b] is a nonempty interval, and $x, y \in I$, then $|x - y| \le b - a$.

Solution. If $x, y \in I$, then we have that $a \leq x, y \leq b$. Thus, we also know that $-x, -y \leq -a$. Adding these inquealities on the right in the nontrivial ways, we get that both $x - y \leq b - a$ and $y - x \leq b - a$. Hence $|x - y| \leq b - a$.

Problem 5 (20 points). Show that if $a_n \to L$ and $|b_n - a_n| \to 0$, then $b_n \to L$.

Solution. Let $\varepsilon > 0$. Since $a_n \to L$, there exists N_1 such that if $n \ge N_1$, $|a_n - L| < \varepsilon/2$. Similarly, there exists N_2 such that if $n \ge N_2$, $|b_n - a_n| < \varepsilon/2$. Set $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$|b_n - L| = |(b_n - a_n) + (a_n - L)| \le |b_n - a_n| + |a_n - L| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$
 Hence $b_n \to L$.