MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 3-SOLUTIONS

Problem 1 (20 points). Let $A, B \subset \mathbb{R}$ be nonempty subsets, and assume that if $x \in A$ or $x \in B$ then $x>0$. Show that if $A / B=\{x / y: x \in A$ and $y \in B\}$, then:

$$
\sup (A / B)=\frac{\sup A}{\inf B}
$$

whenever $\inf B>0$.
Solution. Denote $z=\frac{\sup A}{\inf B}$. We will show that z is an upper bound of A / B, and that if $y<z$, then y is not an upper bound of A / B.

First, we show that z is an upper bound. If $x \in A / B$, then there exists $a \in A$ and $b \in B$ such that $x=a / b$. Since $\sup A$ is an upper bound of $A, a \leq \sup A$. Similarly, $b \geq \inf B$, and hence $1 / b \leq 1 / \inf B$ (since all elements of B are positive). Multiplying these inequalities, we see that

$$
\frac{a}{b} \leq \frac{\sup A}{\inf B}=z
$$

Hence z is an upper bound.
Now suppose that $y<z$. If $y \leq 0, y$ cannot be an upper bound since A and B consist of positive numbers. So without loss of generality, $y>0$. Let $\varepsilon=\frac{\sup A-y \inf B}{1+y}$. Then $\varepsilon>0$ since $y<z$. Since $\sup A$ is the least upper bound of A, there exists $a \in A$ such that $a>\sup A-\varepsilon$. Similarly, there exists b such that $b<\inf B+\varepsilon$. Hence

$$
\begin{aligned}
a / b & >\frac{\sup A-\varepsilon}{\inf B+\varepsilon} \\
& =\frac{(1+y) \sup A-(\sup A-y \inf B)}{(1+y) \inf B+(\sup A-y \inf B)} \\
& =\frac{y(\sup A+\inf B)}{\inf B+\sup A} \\
& =y .
\end{aligned}
$$

Thus, y cannot be an upper bound of A / B and $z=\sup (A / B)$.
Problem 2 (30 points, 10 each). Determine whether the sequence converges. If it converges, find its limit and prove that the sequence converges to that limit. If it diverges, prove that it diverges.
(a) $\left\{\frac{2 n+3}{8 n+7}\right\}$
(b) $\left\{\frac{n^{2}-100 n}{7 n+3}\right\}$
(c) $\{\sin (\pi \cdot n)\}$

Solutions.
(a) We claim this sequence converges to $1 / 4$. This follows from the limit arithmetic theorem (aka, the main limit theorem):

$$
\lim _{n \rightarrow \infty} \frac{2 n+3}{8 n+7}=\lim _{n \rightarrow \infty} \frac{2+3 / n}{8+7 / n}=\frac{2+3 \lim _{n \rightarrow \infty} 1 / n}{8+7 \lim _{n \rightarrow \infty} 1 / n}=2 / 8=1 / 4
$$

(b) We claim that the sequence diverges to ∞. Indeed, fix $M>0$, and let $N=7 M$. Then if $n \geq N$,

$$
\frac{n^{2}-100 n}{7 n+3} \geq \frac{n^{2}}{7 n} \geq \frac{(7 M)^{2}}{7 \cdot(7 M)}=M
$$

Hecne the sequence diverges to ∞.
(c) Since $\sin (\pi \cdot n) \equiv 0$, the sequence is constant, and hence converges (to 0).

Problem 3 (Book 2.2.11, 20 points). Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences, and assume that $b_{n} \rightarrow 0$ and $\left|a_{n}\right| \leq b_{n}$ for every $n \in \mathbb{N}$. Prove that $a_{n} \rightarrow 0$.
Solution. Let $\varepsilon>0$. Since $b_{n} \rightarrow 0$, there exists N such that if $n \geq N,\left|b_{n}-0\right|=\left|b_{n}\right|<\varepsilon$. Then if $n \geq N$,

$$
\left|a_{n}-0\right|=\left|a_{n}\right| \leq b_{n} \leq\left|b_{n}\right|<\varepsilon
$$

Hence $a_{n} \rightarrow 0$.
Problem 4 (10 points). Show that if $I=[a, b]$ is a nonempty interval, and $x, y \in I$, then $|x-y| \leq$ $b-a$.

Solution. If $x, y \in I$, then we have that $a \leq x, y \leq b$. Thus, we also know that $-x,-y \leq-a$. Adding these inquealities on the right in the nontrivial ways, we get that both $x-y \leq b-a$ and $y-x \leq b-a$. Hence $|x-y| \leq b-a$.
Problem 5 (20 points). Show that if $a_{n} \rightarrow L$ and $\left|b_{n}-a_{n}\right| \rightarrow 0$, then $b_{n} \rightarrow L$.
Solution. Let $\varepsilon>0$. Since $a_{n} \rightarrow L$, there exists N_{1} such that if $n \geq N_{1},\left|a_{n}-L\right|<\varepsilon / 2$. Similarly, there exists N_{2} such that if $n \geq N_{2},\left|b_{n}-a_{n}\right|<\varepsilon / 2$. Set $N=\max \left\{N_{1}, N_{2}\right\}$. Then if $n \geq N$,

$$
\left|b_{n}-L\right|=\left|\left(b_{n}-a_{n}\right)+\left(a_{n}-L\right)\right| \leq\left|b_{n}-a_{n}\right|+\left|a_{n}-L\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Hence $b_{n} \rightarrow L$.

