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HOMEWORK 3 - SOLUTIONS

Problem 1 (20 points). Let A,B ⊂ R be nonempty subsets, and assume that if x ∈ A or x ∈ B
then x > 0. Show that if A/B = {x/y : x ∈ A and y ∈ B}, then:

sup(A/B) =
supA

inf B
whenever inf B > 0.

Solution. Denote z = supA
inf B . We will show that z is an upper bound of A/B, and that if y < z, then

y is not an upper bound of A/B.
First, we show that z is an upper bound. If x ∈ A/B, then there exists a ∈ A and b ∈ B such

that x = a/b. Since supA is an upper bound of A, a ≤ supA. Similarly, b ≥ inf B, and hence
1/b ≤ 1/ inf B (since all elements of B are positive). Multiplying these inequalities, we see that

a

b
≤ supA

inf B
= z.

Hence z is an upper bound.
Now suppose that y < z. If y ≤ 0, y cannot be an upper bound since A and B consist of positive

numbers. So without loss of generality, y > 0. Let ε =
supA− y inf B

1 + y
. Then ε > 0 since y < z.

Since supA is the least upper bound of A, there exists a ∈ A such that a > supA − ε. Similarly,
there exists b such that b < inf B + ε. Hence

a/b >
supA− ε

inf B + ε

=
(1 + y) supA− (supA− y inf B)

(1 + y) inf B + (supA− y inf B)

=
y(supA+ inf B)

inf B + supA
= y.

Thus, y cannot be an upper bound of A/B and z = sup(A/B). □

Problem 2 (30 points, 10 each). Determine whether the sequence converges. If it converges, find
its limit and prove that the sequence converges to that limit. If it diverges, prove that it diverges.

(a)

{
2n+ 3

8n+ 7

}
(b)

{
n2 − 100n

7n+ 3

}
(c) {sin(π · n)}
Solutions.

(a) We claim this sequence converges to 1/4. This follows from the limit arithmetic theorem (aka,
the main limit theorem):

lim
n→∞

2n+ 3

8n+ 7
= lim

n→∞

2 + 3/n

8 + 7/n
=

2 + 3 limn→∞ 1/n

8 + 7 limn→∞ 1/n
= 2/8 = 1/4.
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(b) We claim that the sequence diverges to ∞. Indeed, fix M > 0, and let N = 7M . Then if n ≥ N ,

n2 − 100n

7n+ 3
≥ n2

7n
≥ (7M)2

7 · (7M)
= M.

Hecne the sequence diverges to ∞.
(c) Since sin(π · n) ≡ 0, the sequence is constant, and hence converges (to 0).

□

Problem 3 (Book 2.2.11, 20 points). Let (an) and (bn) be sequences, and assume that bn → 0 and
|an| ≤ bn for every n ∈ N. Prove that an → 0.

Solution. Let ε > 0. Since bn → 0, there exists N such that if n ≥ N , |bn − 0| = |bn| < ε. Then if
n ≥ N ,

|an − 0| = |an| ≤ bn ≤ |bn| < ε

Hence an → 0. □

Problem 4 (10 points). Show that if I = [a, b] is a nonempty interval, and x, y ∈ I, then |x− y| ≤
b− a.

Solution. If x, y ∈ I, then we have that a ≤ x, y ≤ b. Thus, we also know that −x,−y ≤ −a.
Adding these inquealities on the right in the nontrivial ways, we get that both x − y ≤ b − a and
y − x ≤ b− a. Hence |x− y| ≤ b− a. □

Problem 5 (20 points). Show that if an → L and |bn − an| → 0, then bn → L.

Solution. Let ε > 0. Since an → L, there exists N1 such that if n ≥ N1, |an − L| < ε/2. Similarly,
there exists N2 such that if n ≥ N2, |bn − an| < ε/2. Set N = max {N1, N2}. Then if n ≥ N ,

|bn − L| = |(bn − an) + (an − L)| ≤ |bn − an|+ |an − L| < ε/2 + ε/2 = ε.

Hence bn → L. □


